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Solutions to Monday’s Homework

We will briefly prove both identities (using differentiation techniques) in today’s session.

/ € T° ax= log a, R(a) > 0.
0

X

> cos(2x) T _6
CONX) 4x = L,
/o +32 T 6"
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Wallis and the Quarter Circle

Area of a Quarter Circle

Consider .
/ V1 — x2dx,
0

the area of a quarter circle of radius 1.

2
Using the formula Area = % with r = 1, we know

1
/ \/1—x2dX:I
0

7
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N

Over seventy years before Euler, Wallis (1656) tried to compute the
quarter-circle integral to reach a formula for 7; but since he could
only handle integrals of the form fol xP(1 — x)9dx (with p, q integers,
or g = 0 and p rational). He used the value of the quarter-circle
integral and some audacious guesswork to propose what became
Wallis’s product.

— George Andrews, Richard Askey, Ranjan Roy

N




From the Quarter Circle to Cosine Powers

Proof Sketch: Substitution x = sinf
Let

x =sinf, dx = cos#df.

V1—x2=14/1—sin’f = cos¥,
T

and as x moves from 0 to 1, the angle # moves from 0 to >
So

Then

/2 w/2

cosf - cosfdb = / cos® 6 dé.
0

1 s
/ V1—x2dx :/
0 0
Thus 1
/ cos?0df = E.
0 4
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The Quarter Circle of Radius 1
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Figure: Graph of y = v/1 —x2 on [0, 1]
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Wallis’s Family of Integrals

Concept: Two Symmetric Families

For n=0,1,2,... consider
w/2 w/2
l, = / sin” 0.do, Jp = / cos"” 0 do.
0 0
By symmetry of sine and cosine on [0, 5],

l, = J, forall n.

We can just work with /,, and remember that L = J, =

Example: First Values

w/2 T w/2
/0:/ 1do =", /1:/ sinfdf = 1.
0 2 0

&3
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The Recurrence for |/,

Proof Sketch: Integration by Parts

w/2
For 1, = / sin" 0df and n > 2,
0

w/2
l, :/ sin"1 9 sin 0 do.
0

Let
u=sin""10, dv = sin 6 dé.

Then
du= (n—1)sin"26cos 6 db, v = —cos¥f.

Integration by parts gives

w/2
In=(n— 1)/ sin""2 0 cos® A dé.
0
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Even and Odd Terms

From )
ni
In: In—27
we get two chains:
® For even n = 2k:
/ _2k—1/ _2k—1 2k-3 § 1/
k™ T Rk T o Tok—2 g 2
® Forodd n =2k + 1:
/ 2k / 2k 2k — 2 gl
kel T o1t T oky1 2k—1 30t

. . . . . ™
So every I, is a product of simple rational factors times either Iy = > or h =1.
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An Inequality for 5, and b, 1

For 0 <6 < 7 we have
0<sinf <1.

Fix an integer n > 1. Then
sin?"t1 9 <sin?" 0 < sin?"1 4,

because we are multiplying by another factor of sin6 € [0, 1] each time.

Integrating over [0, 5] gives
bnt1 < hn < hp-1.

Dividing by hpy1:
1 S Izn S Ign_l _ 2n+1
bnt1 = bt 2n

i

where the equality uses the recurrence.
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Applying the Squeeze Theorem

Concept: Limit of the Ratio

1 < bn < 2n+1 ‘

hnt1 2n
As n — oo,

2n+1 1

2n '

so the squeeze theorem gives

. /2n

lim =1.
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Constructing Wallis’s Product

Using the explicit formulas:

/ " 2k—1 w
on = — A

Pt 2k 2

no 2k
boyr =[] 57—
Pt 2k +1
and the fact that
I2n
— 1,
bnt1

we get
Wallis Product

1_10—0[ 2k 2k
2 h2k—1 2k+1
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Summary of the Argument

Concept: Main Steps

e Define I, = foﬂ/2 sin™ x dx.

® Derive recurrences for b, and hpy1.
2n+1

2n—1

® Use the inequality sin x < sin?" x < sin X.

® Apply the squeeze theorem to get b’:ﬁ — 1.

® Combine explicit products for b, and 1.

This yields Wallis's classical product for .

Observation: A Useful Substitution

Under the substitution t = x2, the quarter-circle integral becomes

1 1
/ V1—x2dx = ;/ t71/2(1 — )2 dt.
0 0
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Of course, Wallis did not write his product as a limit or use the
gamma function. Still, his result may have led Euler to consider
the relation between the gamma function and integrals of the form
fol xP(1 — x)9dx, where p and q are not necessarily integers.

— George Andrews, Richard Askey, Ranjan Roy




First Encounter

Concept: Guiding Idea

Many complicated integrals can be turned into a small number of template integrals by
substitutions or parameter tricks. One of the cleanest templates is the Beta integral.

B( _ /1 x—1 -1
x,y) ; (1 —t) de (x,y > 0).

® |t depends on two real parameters x and y.
® The integrand is a simple product of powers on the fixed interval [0, 1].

® In many problems, a messy integral becomes this shape after “good substitution(s).”
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Goal: recognise when a complicated

integral is just a Beta integral in disguise




Basic Identities We Will Use

Concept: Quick Checks on B(x, y)

Before using B(x,y) as a template, we record a few identities that are easy to verify and
will be used repeatedly.

¢ Symmetry:
B(x,y) = Bly,x),
obtained from the substitution t +— 1 — ¢t in the defining integral.
® Two simple special cases:

L 1 1
B(1, :/ 1—¢t)Y tde ==, B(x,1) = —.
)= [@-ota= By =
® A structural relation (to remember for later):
re)riy)
Mx+y)

Abdulhafeez Abdulsalam 17/38
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Recognising the Beta Shape (I)

Concept: The Target Form
1
/ 11— t)~tdt.
0
This form is built entirely from powers of t and (1 — t). Many integrals can be rearranged

into this shape with a suitable substitution.

® The interval is fixed: 0 to 1.
® Only exponents change; the structure stays simple.

® Once the integrand matches this pattern, the result becomes B(x, y).
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Recognising the Beta Shape (I1)

Concept: Common Routes to (0, 1)

Many integrals become Beta-shaped after a standard change of variable.

® From (0, c0):
X

t = .
1+ x
This substitution instantly produces factors of ¢ and (1 — t).
® From [0, 7]:

u =sin%0,
which is useful for integrals involving powers of sin and cos.

® Already on [0,1]: Aim to rewrite the integrand so that powers of t and (1 — t)
become visible.
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Example: (0,00) to (0,1)

Consider

00 Xa—l
——dx.
/0 (1+ x)otB x

Use the substitution

Then

1 t Ot—].
dx = 1 — a-1 _ )
x (1—-1¢)% =TTy X <1—t>

After simplification:
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Reverse: (0,1) to (0, c0)

Start with the Beta integral

1
/ 11— t)~tdt.
0

Use the substitution

Then

dt =

ds tXl—( S )X_l
(1+5)% “\1l+s '

After simplification:
0o Sx—l
2 s =
/0 (1+s)tr

Abdulhafeez Abdulsalam
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Example: [0, 7] to (0,1)

Consider .
2/2 sin? 19 cos® 10 do.
0
Use the substitution
t =sin%0 (dt = 2sin 6 cos 0 df).

Then
2sin>719 cos¥1odl = 1(1 — t)Ldt.

Hence . )
2/2 sin> 16 cos?19do = / 11— t)~tdt = B(x, y).
0 0
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Example: [0, 7] to (0,1)

Consider .
/2 sin* 0 cos” 0d6.
0
Let
u=sin’f (du = 2sinf cos 0 db).
Then

sin* 0 = u¥/?, cos’ 0 = (1 — u)”/?,

The integral becomes
1t Yy 1/ —1/2
5/ uz(1—u)2u 51— u) du,
0

which simplifies to

1B(x+1 y+1>
2 2 72 )
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Summary of Beta Integrals

The fundamental Beta integral admits three standard forms:
¢ Euler’s first Beta integral (on [0, 1]):

1
/ 1 - t)tdt.
0

® Euler’s second Beta integral (on (0, 0)):

o0 sX—l
—d
/0 (1+S)x+y s

¢ Trigonometric Beta integral (on [0, 7/2]):

/2
/ sin? 10 cos¥ 16 do.
0

All evaluate to B(x, y).

Abdulhafeez Abdulsalam
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Examples of the Three Beta Forms

® Euler’s first form (on [0,1]) Choose x =2, y = 3:

1
/ 21— t)%dt = B(2,3) = -
0 !
¢ Euler’s second form (on (0,00)) Choose x =1, y = 2:

o0 1 1
— —ds=B(1.2) = —.
/0 Ao ds =802 =5

* Trigonometric form (on [0, 7/2]) Choose x = y = %:

T de L (2 1)—1r<1)2
0 Vsinflcosf 2 ¥4 2ym \4)
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More Beta Integral Examples

® Euler’s first form ([0,1]) Take x = 3, y =

Nlw

: rG)re)
_ 3/2(1 _ \1/2 4, _ p(5 3) _ _\2/)7\2
/ /0 t>9(1 —t)=de B(Z, 2) c .

Using r(%) M and I‘(%) = @

I:B(g,%)_%%_%.
5
2

8
y:

NIW

® Euler’s second form ((0,00)) Take x =

o g1/2 5 rerag) =«
/o (1+s) ids=B(33) =t — 1
y

Abdulhafeez Abdulsalam

26/38


https://aasalam.com

The Shape of the Beta Integrand

Let
f(ty="1a1 -t o0<t<l

Its shape on (0,1) is determined by what happens near the endpoints:

e Ast—0T:
f(t) ~ XL

e Ast — 17
f(t) ~(1—t)Y L.

The parameter x controls the behaviour near 0, and y controls the behaviour near 1.
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Poisson’s Double Integral

Concept: The Starting Point

Consider
| = // vl () qudy, Rx >0, Ry > 0.
u>0, v>0

Proof Sketch: First Evaluation

The integrand factors, and the region is a product:

| = (/Ooo que”du> (/OOO vyle"dv) =T(x)r(y).
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Second Evaluation: Change of Variables

Concept: Poisson's Substitution

Set
u=rt, v=r(l—t),

with r > 0 and 0 < t < 1. This parametrises the first quadrant.

Proof Sketch

Compute the Jacobian:
0 t
J =det ufor dufo = det t )= —r.
ov/or 0v/ot 1-t —r

|J| = r, dudv = rdrdt.

Thus
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Second Evaluation: Substitution Yields Beta

Proof Sketch

Substitute into the integrand:
ux—lvy—le—(u+v) _ rx+y—2tx—1(1 _ t.)y—le—r'
Multiplying by dudv = rdrdt:
T leT () qudy = YT le T (1 — 1) drdt

Thus

I = (/01 11— )t dt) (/OOO rX+y1efdr> = B(x,y)T(x +y).
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Conclusion of Poisson’s Proof

Concept: Equating the Two Evaluations

We found
I=T(x)I'(y) and [=B(x,y)[(x+y).

Therefore,

FeIr(y)

Bx,y)I(x +y)=T(x)MNy) = |B(x,y)= Tt y)

This double-integral argument is the classical proof attributed to Poisson.
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A Special Case: B(x, 1 — x)

Using the Beta—Gamma relation,

B(x,1—x)= ) rr((il) x)
Euler's reflection formula states:
M) - x) = Sinz;x).
Therefore, -
Blx, 1=x) = sin(mx)’

This identity gives closed forms for many Beta integrals involving complementary

parameters.
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Dedekind’s Proof of Euler’'s Reflection Formula

Concept 1: Dedekind's Auxiliary Function

ootX—l
= dt 0<x<1.
600 = [ e x

Concept 2: Two Basic Identities

For every s > 0,

oo +x—1 co x—1
/ AN P P(x)s™*, / LA P B(x)s* L.
0 0

st+1 t+s

Hence

Sx—l _gX 00 x—1(4
o = [ e

s—1 st+1)(t+s)
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Dedekind’s Proof: Core ldentities

Concept 3: Squaring ¢

Changing order of integration gives

Concept 4: Symmetry in x

For 0 < y <1, integrate in x from 1 — y to y:

y ) B oo py—1 _ 4=y
/l_y[¢(x)] dx_/o S

Integrate the last integral in C. 2 from s = 0 to oo and use C. 3 to obtain

qb(x)/lxx[qb(t)]2dt _2¢(x), O<x<l
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Conclusion of Dedekind’s Proof |

Concept 5: Central Symmetry

From ¢(x) = ¢(1 — x),
’% :, & /7 ]Zdt—2/ [6(1)]? dt.

Thus .
2 o
) [ IR de = ().

Concept 6: Dedekind's Differential Equation

Differentiating

SYRCCRIEIS

gives the ODE ¢ ¢ — (¢)? = ¢*.
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Conclusion of Dedekind’s Proof |l

Concept 7: Solving the ODE

With

the unique solution is
(x) = 7 csc(mx).

Concept 8: Euler's Reflection Formula

Since ¢(x) = M(x)M(1 —x),
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Homework for Monday

You may use any method you prefer. If you can reduce the integrals to a Beta form or
make use of Euler’s reflection formula, even better.

Solve the following integrals

o

5 1
— dx
/0 V1 4+ cos? x
o o
/ sin(x?) dx
0

Bring your solution to Wednesday's session.
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(N——

F)r1—x) =

sin(mx)

to be continued. ..



