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Solutions to Monday’s Homework

We will briefly prove both identities (using differentiation techniques) in today’s session.

Homework 1 ∫ ∞

0

e−x − e−ax

x dx = log a, ℜ(a) > 0.

Homework 2 ∫ ∞

0

cos(2x)
x2 + 32 dx = π

6 e−6.
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Wallis and the Quarter Circle

Area of a Quarter Circle
Consider ∫ 1

0

√
1 − x2 dx ,

the area of a quarter circle of radius 1.

Using the formula Area = πr2

4 with r = 1, we know

∫ 1

0

√
1 − x2 dx = π

4 .
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Over seventy years before Euler, Wallis (1656) tried to compute the
quarter-circle integral to reach a formula for π; but since he could
only handle integrals of the form

∫ 1
0 xp(1 − x)q dx (with p, q integers,

or q = 0 and p rational). He used the value of the quarter-circle
integral and some audacious guesswork to propose what became
Wallis’s product.
— George Andrews, Richard Askey, Ranjan Roy

“

”



From the Quarter Circle to Cosine Powers

Proof Sketch: Substitution x = sin θ

Let
x = sin θ, dx = cos θ dθ.

Then √
1 − x2 =

√
1 − sin2 θ = cos θ,

and as x moves from 0 to 1, the angle θ moves from 0 to π

2 .
So ∫ 1

0

√
1 − x2 dx =

∫ π/2

0
cos θ · cos θ dθ =

∫ π/2

0
cos2 θ dθ.

Thus ∫ π/2

0
cos2 θ dθ = π

4 .
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The Quarter Circle of Radius 1
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Figure: Graph of y =
√

1 − x2 on [0, 1]
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Wallis’s Family of Integrals

Concept: Two Symmetric Families
For n = 0, 1, 2, . . . consider

In =
∫ π/2

0
sinn θ dθ, Jn =

∫ π/2

0
cosn θ dθ.

By symmetry of sine and cosine on
[
0, π

2
]
,

In = Jn for all n.

We can just work with In, and remember that I2 = J2 = π

4 .

Example: First Values

I0 =
∫ π/2

0
1 dθ = π

2 , I1 =
∫ π/2

0
sin θ dθ = 1.

Later, I2 = π

4 will connect back to the quarter circle.
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The Recurrence for In

Proof Sketch: Integration by Parts

For In =
∫ π/2

0
sinn θ dθ and n ≥ 2,

In =
∫ π/2

0
sinn−1 θ sin θ dθ.

Let
u = sinn−1 θ, dv = sin θ dθ.

Then
du = (n − 1) sinn−2 θ cos θ dθ, v = − cos θ.

Integration by parts gives

In = (n − 1)
∫ π/2

0
sin n−2 θ cos2 θ dθ.

Using cos2 θ = 1 − sin2 θ,
In = (n − 1)(In−2 − In),

so
In = n − 1

n In−2 .
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Even and Odd Terms

From
In = n − 1

n In−2,

we get two chains:
• For even n = 2k:

I2k = 2k − 1
2k I2k−2 = 2k − 1

2k · 2k − 3
2k − 2 · · · 3

4 · 1
2 I0.

• For odd n = 2k + 1:

I2k+1 = 2k
2k + 1 I2k−1 = 2k

2k + 1 · 2k − 2
2k − 1 · · · 2

3 · I1.

So every In is a product of simple rational factors times either I0 = π

2 or I1 = 1.
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An Inequality for I2n and I2n+1

For 0 ≤ θ ≤ π
2 we have

0 ≤ sin θ ≤ 1.

Fix an integer n ≥ 1. Then

sin2n+1 θ ≤ sin2n θ ≤ sin2n−1 θ,

because we are multiplying by another factor of sin θ ∈ [0, 1] each time.

Integrating over [0, π
2 ] gives

I2n+1 ≤ I2n ≤ I2n−1.

Dividing by I2n+1:
1 ≤ I2n

I2n+1
≤ I2n−1

I2n+1
= 2n + 1

2n ,

where the equality uses the recurrence.
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Applying the Squeeze Theorem

Concept: Limit of the Ratio

1 ≤ I2n
I2n+1

≤ 2n + 1
2n .

As n → ∞,
2n + 1

2n → 1,

so the squeeze theorem gives

lim
n→∞

I2n
I2n+1

= 1.
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Constructing Wallis’s Product

Using the explicit formulas:

I2n =
n∏

k=1

2k − 1
2k · π

2 ,

I2n+1 =
n∏

k=1

2k
2k + 1 ,

and the fact that
I2n

I2n+1
→ 1,

we get

Wallis Product
π

2 =
∞∏

k=1

2k
2k − 1 · 2k

2k + 1 .
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Summary of the Argument

Concept: Main Steps
• Define Im =

∫ π/2
0 sinm x dx .

• Derive recurrences for I2n and I2n+1.
• Use the inequality sin2n+1 x ≤ sin2n x ≤ sin2n−1 x .
• Apply the squeeze theorem to get I2n

I2n+1
→ 1.

• Combine explicit products for I2n and I2n+1.

This yields Wallis’s classical product for π.

Observation: A Useful Substitution
Under the substitution t = x2, the quarter-circle integral becomes∫ 1

0

√
1 − x2 dx = 1

2

∫ 1

0
t−1/2(1 − t)1/2 dt.
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Of course, Wallis did not write his product as a limit or use the
gamma function. Still, his result may have led Euler to consider
the relation between the gamma function and integrals of the form∫ 1

0 xp(1 − x)q dx, where p and q are not necessarily integers.
— George Andrews, Richard Askey, Ranjan Roy

“

”



First Encounter

Concept: Guiding Idea
Many complicated integrals can be turned into a small number of template integrals by
substitutions or parameter tricks. One of the cleanest templates is the Beta integral.

B(x , y) =
∫ 1

0
tx−1(1 − t)y−1 dt (x , y > 0).

• It depends on two real parameters x and y .
• The integrand is a simple product of powers on the fixed interval [0, 1].
• In many problems, a messy integral becomes this shape after “good substitution(s).”
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∫ ∫
∫

∫
Goal: recognise when a complicated

integral is just a Beta integral in disguise



Basic Identities We Will Use

Concept: Quick Checks on B(x , y)
Before using B(x , y) as a template, we record a few identities that are easy to verify and
will be used repeatedly.

• Symmetry:
B(x , y) = B(y , x),

obtained from the substitution t 7→ 1 − t in the defining integral.
• Two simple special cases:

B(1, y) =
∫ 1

0
(1 − t)y−1 dt = 1

y , B(x , 1) = 1
x .

• A structural relation (to remember for later):

B(x , y) = Γ(x) Γ(y)
Γ(x + y) .
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Recognising the Beta Shape (I)

Concept: The Target Form ∫ 1

0
tx−1(1 − t)y−1 dt.

This form is built entirely from powers of t and (1 − t). Many integrals can be rearranged
into this shape with a suitable substitution.

• The interval is fixed: 0 to 1.
• Only exponents change; the structure stays simple.
• Once the integrand matches this pattern, the result becomes B(x , y).
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Recognising the Beta Shape (II)

Concept: Common Routes to (0, 1)
Many integrals become Beta-shaped after a standard change of variable.

• From (0, ∞):
t = x

1 + x .

This substitution instantly produces factors of t and (1 − t).
• From [0, π

2 ]:
u = sin2 θ,

which is useful for integrals involving powers of sin and cos.
• Already on [0, 1]: Aim to rewrite the integrand so that powers of t and (1 − t)

become visible.
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Example: (0, ∞) to (0, 1)

Consider ∫ ∞

0

xα−1

(1 + x)α+β
dx .

Use the substitution
t = x

1 + x

(
x = t

1 − t

)
.

Then
dx = dt

(1 − t)2 , 1 + x = 1
1 − t , xα−1 =

( t
1 − t

)α−1
.

After simplification: ∫ 1

0
tα−1(1 − t)β−1 dt = B(α, β).
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Reverse: (0, 1) to (0, ∞)

Start with the Beta integral ∫ 1

0
tx−1(1 − t)y−1 dt.

Use the substitution
t = s

1 + s
Then

dt = ds
(1 + s)2 , tx−1 =

( s
1 + s

)x−1
, (1 − t)y−1 = (1 + s)1−y .

After simplification: ∫ ∞

0

s x−1

(1 + s) x+y ds = B(x , y).
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Example: [0, π
2 ] to (0, 1)

Consider
2
∫ π

2

0
sin2x−1 θ cos2y−1 θ dθ.

Use the substitution
t = sin2 θ (dt = 2 sin θ cos θ dθ).

Then
2 sin2x−1 θ cos2y−1 θ dθ = tx−1(1 − t)y−1 dt.

Hence
2
∫ π

2

0
sin2x−1 θ cos2y−1 θ dθ =

∫ 1

0
tx−1(1 − t)y−1 dt = B(x , y).
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Example: [0, π
2 ] to (0, 1)

Consider ∫ π
2

0
sinx θ cosy θ dθ.

Let
u = sin2 θ (du = 2 sin θ cos θ dθ).

Then
sinx θ = ux/2, cosy θ = (1 − u)y/2.

The integral becomes
1
2

∫ 1

0
u

x
2 (1 − u)

y
2 u−1/2(1 − u)−1/2 du,

which simplifies to
1
2B
(x + 1

2 ,
y + 1

2

)
.
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Summary of Beta Integrals

The fundamental Beta integral admits three standard forms:
• Euler’s first Beta integral (on [0, 1]):∫ 1

0
tx−1(1 − t)y−1 dt.

• Euler’s second Beta integral (on (0, ∞)):∫ ∞

0

sx−1

(1 + s)x+y ds.

• Trigonometric Beta integral (on [0, π/2]):∫ π/2

0
sin2x−1 θ cos2y−1 θ dθ.

All evaluate to B(x , y).
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Examples of the Three Beta Forms

• Euler’s first form (on [0, 1]) Choose x = 2, y = 3:∫ 1

0
t1(1 − t)2 dt = B(2, 3) = Γ(2)Γ(3)

Γ(5) = 1! 2!
4! = 1

12 .

• Euler’s second form (on (0, ∞)) Choose x = 1, y = 2:∫ ∞

0

1
(1 + s)3 ds = B(1, 2) = 1

2 .

• Trigonometric form (on [0, π/2]) Choose x = y = 1
4 :∫ π/2

0

dθ√
sin θ cos θ

= 1
2 B

(
1
4 , 1

4

)
= 1

2
√

π
Γ
(1

4

)2
.
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More Beta Integral Examples

• Euler’s first form ([0, 1]) Take x = 5
2 , y = 3

2 :

I =
∫ 1

0
t3/2(1 − t)1/2 dt = B

(
5
2 , 3

2

)
=

Γ(5
2)Γ(3

2)
Γ(4) .

Using Γ(5
2) = 3

√
π

4 and Γ(3
2) =

√
π

2 ,

I = B
(

5
2 , 3

2

)
= 3π

8 · 1
6 = π

16 .

• Euler’s second form ((0, ∞)) Take x = 3
2 , y = 5

2 :∫ ∞

0

s1/2

(1 + s)4 ds = B
(

3
2 , 5

2

)
=

Γ(3
2)Γ(5

2)
Γ(4) = π

16 .

• Trigonometric form ([0, π/2]) Take x = 3
2 , y = 5

2 :∫ π/2

0
sin2 θ cos4 θ dθ = 1

2 B
(

3
2 , 5

2

)
= 1

2 · π

16 = π

32 .
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The Shape of the Beta Integrand

Let
f (t) = tx−1(1 − t)y−1, 0 < t < 1.

Its shape on (0, 1) is determined by what happens near the endpoints:

• As t → 0+:
f (t) ∼ t x−1.

• As t → 1−:
f (t) ∼ (1 − t) y−1.

The parameter x controls the behaviour near 0, and y controls the behaviour near 1.
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Poisson’s Double Integral

Concept: The Starting Point
Consider

I =
∫∫

u>0, v>0
ux−1vy−1e−(u+v) du dv , ℜx > 0, ℜy > 0.

Proof Sketch: First Evaluation
The integrand factors, and the region is a product:

I =
(∫ ∞

0
ux−1e−u du

)(∫ ∞

0
vy−1e−v dv

)
= Γ(x)Γ(y).
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Second Evaluation: Change of Variables

Concept: Poisson’s Substitution
Set

u = rt, v = r(1 − t),

with r > 0 and 0 < t < 1. This parametrises the first quadrant.

Proof Sketch
Compute the Jacobian:

J = det
(

∂u/∂r ∂u/∂t
∂v/∂r ∂v/∂t

)
= det

(
t r

1 − t −r

)
= −r .

Thus
|J | = r , du dv = r dr dt.

Abdulhafeez Abdulsalam 29/38

https://aasalam.com


Second Evaluation: Substitution Yields Beta

Proof Sketch
Substitute into the integrand:

ux−1vy−1e−(u+v) = r x+y−2tx−1(1 − t)y−1e−r .

Multiplying by du dv = r dr dt:

ux−1vy−1e−(u+v) du dv = r x+y−1e−r tx−1(1 − t)y−1 dr dt.

Thus

I =
(∫ 1

0
tx−1(1 − t)y−1 dt

)(∫ ∞

0
r x+y−1e−r dr

)
= B(x , y) Γ(x + y).
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Conclusion of Poisson’s Proof

Concept: Equating the Two Evaluations
We found

I = Γ(x)Γ(y) and I = B(x , y)Γ(x + y).

Therefore,

B(x , y)Γ(x + y) = Γ(x)Γ(y) =⇒ B(x , y) = Γ(x)Γ(y)
Γ(x + y)

This double-integral argument is the classical proof attributed to Poisson.
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A Special Case: B(x , 1 − x)

Using the Beta–Gamma relation,

B(x , 1 − x) = Γ(x) Γ(1 − x)
Γ(1) .

Euler’s reflection formula states:

Γ(x) Γ(1 − x) = π

sin(πx) .

Therefore,
B(x , 1 − x) = π

sin(πx) .

This identity gives closed forms for many Beta integrals involving complementary

parameters.
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Dedekind’s Proof of Euler’s Reflection Formula

Concept 1: Dedekind’s Auxiliary Function

ϕ(x) =
∫ ∞

0

tx−1

1 + t dt, 0 < x < 1.

Concept 2: Two Basic Identities
For every s > 0,∫ ∞

0

tx−1

st + 1 dt = ϕ(x)s−x ,

∫ ∞

0

tx−1

t + s dt = ϕ(x)sx−1.

Hence
ϕ(x) sx−1 − s−x

s − 1 =
∫ ∞

0

tx−1(t − 1)
(st + 1)(t + s) dt.
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Dedekind’s Proof: Core Identities

Concept 3: Squaring ϕ

Changing order of integration gives

[ϕ(x)]2 =
∫ ∞

0

tx−1 log t
t − 1 dt.

Concept 4: Symmetry in x
For 0 < y < 1, integrate in x from 1 − y to y :∫ y

1−y
[ϕ(x)]2 dx =

∫ ∞

0

t y−1 − t−y

t − 1 dt.

Integrate the last integral in C. 2 from s = 0 to ∞ and use C. 3 to obtain

ϕ(x)
∫ x

1−x
[ϕ(t)]2 dt = 2 ϕ′(x), 0 < x < 1.
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Conclusion of Dedekind’s Proof I

Concept 5: Central Symmetry
From ϕ(x) = ϕ(1 − x),

ϕ′
(

1
2

)
= 0, &

∫ x

1−x
[ϕ(t)]2 dt = 2

∫ x

1/2
[ϕ(t)]2 dt.

Thus
ϕ(x)

∫ x

1/2
[ϕ(t)]2 dt = ϕ′(x).

Concept 6: Dedekind’s Differential Equation
Differentiating

ϕ(x)
∫ x

1/2
[ϕ(t)]2dt = ϕ′(x)

gives the ODE ϕ ϕ′′ − (ϕ′)2 = ϕ4.
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Conclusion of Dedekind’s Proof II

Concept 7: Solving the ODE
With

ϕ
(

1
2

)
= π, ϕ′

(
1
2

)
= 0,

the unique solution is
ϕ(x) = π csc(πx).

Concept 8: Euler’s Reflection Formula
Since ϕ(x) = Γ(x)Γ(1 − x),

Γ(x)Γ(1 − x) = π

sin(πx)
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Homework for Monday

You may use any method you prefer. If you can reduce the integrals to a Beta form or
make use of Euler’s reflection formula, even better.

Solve the following integrals
1 ∫ π

2

0

1√
1 + cos2 x

dx

2 ∫ ∞

0
sin(x2) dx

Bring your solution to Wednesday’s session.
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∫∫ ∮Γ(x)Γ(1 − x) = π
sin(πx)

to be continued. . .


