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What Are Special Functions and ODEs?

• Ordinary differential equations (ODEs): equations that connect a function and its
derivatives.

• Special functions: functions that arise repeatedly in mathematics and physics, often
discovered while solving differential equations or evaluating fundamental integrals.

Some have descriptive names (like the Gamma function Γ, the polygamma function
ψs , the Beta function B, or the polylogarithm Lis),
while others are named after people (like the Bessel function Jν , the Legendre
polynomial Pn, the Hermite polynomial Hn, or the Airy function Ai).

• Special values: evaluations at notable inputs (often integers or fractions) that yield
important constants — e.g. Γ

(
1
2

)
=

√
π, Li2(1) = π2

6 .
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Plan for the Mini-Course

• Gamma Function Γ(x): a smooth extension of factorials (n − 1)! to all real x > 0.

• Beta Function B(x , y): an integral on [0, 1] with the identity

B(x , y) = Γ(x) Γ(y)
Γ(x + y) .

• Elementary ODEs: constant–coefficient ODEs that reduce to polynomials.

• Conversion Trick: integral → ODE → solve ODE → value of the integral.
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Why Special Functions?

• Many non-elementary integrals lead naturally to special functions, e.g.∫ ∞

0
e−x2 dx =

√
π

2 = 1
2 Γ
(1

2

)
.

• They arise as solutions of classical differential equations, e.g.

x2y ′′ + xy ′ + (x2 − ν2)y = 0 has solution y = Jν(x).

• Familiarity with them reveals structure in complex expressions, e.g.
∞∑

n=0

(−z)n

(n!)2 = J0(2
√

z).
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Why Special Functions?

From a Complicated Integral to a Series
They allow us to express complex results more simply. For instance,∫ ∞

0
xν−1e−βx−γ/x dx =

(
γ

β

)ν/2 π

sin(πν) [A−ν(z) − Aν(z)],

where

A−ν(z) =
(z

2

)−ν ∞∑
k=0

(z2/4)k

k! Γ(1 − ν + k) , Aν(z) =
(z

2

)ν ∞∑
k=0

(z2/4)k

k! Γ(1 + ν + k) ,

with
z = 2

√
βγ, ℜβ,ℜγ > 0, ν /∈ Z.
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Connection to the Bessel Function

Simplified Expression
With the modified Bessel function Kν , we have∫ ∞

0
xν−1e−βx−γ/x dx = 2

(
γ

β

)ν/2
Kν
(
2
√
βγ
)
,

valid for ℜβ,ℜγ > 0, ν /∈ Z.

(The lengthy double series collapses beautifully into a single special function.)
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The Gamma Function

Extending the factorials
• Factorials: n! = 1 · 2 · 3 · · · n

• Only defined for whole numbers

• What is 1
2 ! or 3

4 ! ?

• Goal: a smooth extension of factorials to all real (and later complex) numbers
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What is a Smooth Extension?
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Figure: Plot of Γ(x) passing smoothly through factorial values
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An Integral That Creates a Function

A curious example

I(x) =
∫ ∞

0
t x−1e−t dt

• This integral converges for every x > 0.

• For integer x , it gives:

I(1) = 1, I(2) = 1!, I(3) = 2!, I(4) = 3!, . . .

• We name this function Γ(x) — it extends factorials continuously.

• So, a definite integral produced a new function — our first special function.
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How the Gamma Function Extends Factorials

Proof Sketch: Setup
Recall

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0.

For x > 0, consider
Γ(x + 1) =

∫ ∞

0
txe−t dt.

We apply integration by parts with u = tx , dv = e−tdt, so that du = x tx−1dt and
v = −e−t .
Substituting,

Γ(x + 1) = −txe−t
∣∣∣∞
0

+ x
∫ ∞

0
tx−1e−t dt.
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Deriving the Recurrence Γ(x + 1) = x Γ(x)

Proof Sketch: Simplification
The boundary term vanishes because txe−t →0 as t →∞ and at t = 0.
Hence

Γ(x + 1) = x Γ(x).

For integers n ≥ 1,
Γ(n + 1) = n Γ(n) = n!,

so the Gamma function truly extends the factorials.

(This simple identity is the heartbeat of the entire Γ family.)
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The Gaussian Integral and the Gamma Function

Example: Gaussian Integral

f (a) =
∫ ∞

0
e−ax2 dx , a > 0.

This integral appears everywhere — in probability, statistics, and physics.

It is also closely related to the Gamma function:

Γ(p) =
∫ ∞

0
tp−1e−t dt.

(Let’s see how a simple substitution turns one integral into the other.)
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From f (a) to the Gamma Function

A simple substitution
To see the connection, let

t = ax2 =⇒ dt = 2ax dx , x = 1
2
√

a t− 1
2 .

Substituting into f (a) gives

f (a) = 1
2
√

a

∫ ∞

0
t−1/2e−t dt.

The remaining integral is just the Gamma function at p = 1
2 :

f (a) = 1
2
√

a Γ
(

1
2

)
.

Abdulhafeez Abdulsalam 14/36

https://aasalam.com


Introducing a Parameter

Concept: A new way to look at f (a)
Think of a as a variable, and consider

I(s) =
∫ ∞

0
f (a) e−sa da =

∫ ∞

0

∫ ∞

0
e−a(x2+s) dx da, s > 0.

Because the integrand is positive and decays quickly, we can swap the order of
integration:

I(s) =
∫ ∞

0

∫ ∞

0
e−a(x2+s) da dx .

The inner integral is easy: ∫ ∞

0
e−a(x2+s) da = 1

x2 + s .
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Introducing a Parameter (II)

Evaluating I(s)
We now have

I(s) =
∫ ∞

0

1
x2 + s dx .

Using the substitution x =
√

s tan θ,

I(s) = 1√
s

∫ π/2

0
dθ = π

2
√

s .

Hence
I(s) =

∫ ∞

0
f (a)e−sa da = π

2
√

s .

(This relation tells us how f (a) must depend on a.)
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Connecting Back to the Gamma Function

Concept: Relating I(s) and Γ(p)
Recall the Gamma function:

Γ(p) =
∫ ∞

0
tp−1e−t dt.

Substituting t = sa gives
Γ(p) = sp

∫ ∞

0
ap−1e−as da.

Hence, ∫ ∞

0
ap−1e−as da = Γ(p)

sp .

For p = 1
2 , ∫ ∞

0
a−1/2e−as da =

Γ(1
2)

√
s .

Abdulhafeez Abdulsalam 17/36

https://aasalam.com


Connecting Back to the Gamma Function (II)

Concept: Determining f (a)
From the parameter method, we know

I(s) = π

2
√

s =
∫ ∞

0

π a−1/2

2 Γ(1
2)

e−sa da.

This means that
f (a) = π a−1/2

2 Γ(1
2)
.

But earlier, we found directly that

f (a) = 1
2
√

a Γ
(

1
2

)
.
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Evaluating Γ
(1

2
)

Concept: Comparing the two forms of f (a)
Equating both expressions for f (a), we have

1
2
√

a Γ
(

1
2

)
= π a−1/2

2 Γ
(

1
2

) .

Multiplying both sides by 2
√

a Γ
(

1
2

)
gives

Γ2
(

1
2

)
= π.

Therefore,
Γ
(

1
2

)
=

√
π
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What Is an Ordinary Differential Equation?

Concept: A first encounter
• An ordinary differential equation (ODE) connects a function y(x) with its

derivatives.
y ′(x), y ′′(x), y (3)(x), . . .

• It is called ordinary because the function depends on only one variable (unlike partial
differential equations, PDEs).

• Example:
y ′(x) = 2y(x) =⇒ solution y(x) = Ce2x .

• Many physical laws (cooling, motion, growth, decay) take this form.
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First–Order ODEs and Separation of Variables

Concept: A gentle start before higher–order equations
The simplest differential equations involve only the first derivative:

dy
dx = g(x) h(y).

If we can separate x–terms and y–terms, the equation is separable:

dy
h(y) = g(x) dx .

Integrating both sides gives the solution:∫ dy
h(y) =

∫
g(x) dx + C .
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Example

Concept: An exponential growth equation
Consider

y ′ = ky .

It is separable:
dy
y = k dx .

Integrating both sides gives

ln y = kx + C =⇒ y = Cekx .
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Elementary ODEs with Constant Coefficients (I)

ODE Recipe: From calculus to algebra
• A constant–coefficient ODE has fixed numbers (not functions of x) multiplying the

derivatives.
a2y ′′ + a1y ′ + a0y = 0.

• We make the standard exponential ansatz y = erx . Substituting gives

(a2r2 + a1r + a0)erx = 0.

Since erx ̸= 0,
a2r2 + a1r + a0 = 0,

so we end up with a simple polynomial equation in r .
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Elementary ODEs with Constant Coefficients (II)

ODE Recipe: From calculus to algebra
• This is called the characteristic (or auxiliary) equation.

• So constant–coefficient ODEs reduce to solving a polynomial!

y(x) = C1er1x + C2er2x .

• These are our most “elementary” ODEs.
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Shapes of the Solutions (I)

Concept: Real roots of the characteristic equation
For

a2y ′′ + a1y ′ + a0y = 0 =⇒ a2r2 + a1r + a0 = 0,

each root r gives an exponential erx .

1. Two distinct real roots r1, r2:

y = C1er1x + C2er2x .

Example: y ′′ − 3y ′ + 2y = 0 =⇒ r = 1, 2 =⇒ y = C1ex + C2e2x .

2. Repeated real root r :
y = (C1 + C2x)erx .

Example: y ′′ − 2y ′ + y = 0 =⇒ r = 1 =⇒ y = (C1 + C2x)ex .
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Shapes of the Solutions (II)

Concept: Complex conjugate roots
If r = α± iβ with real α, β, the solution combines exponentials and oscillations:

y = eαx(C1 cos βx + C2 sinβx
)
.

Example: y ′′ + y = 0 ⇒ r = ±i . Hence

y = C1 cos x + C2 sin x .

Here α = 0, β = 1: the solution neither grows nor decays—it oscillates.

(Imaginary roots =⇒ waves and harmonic motion.)
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Idea: Treat a Parameter as a Variable

Concept: From integrals to ODEs
• Many integrals depend on a parameter, e.g.

I(α) =
∫ ∞

0
e−x2 cos(αx) dx , α ∈ R.

• Instead of attacking the integral directly, we:
• view I(α) as an unknown function of α;
• differentiate I(α) with respect to α under the integral sign;
• simplify until we obtain an ODE for I(α) .

• Then we solve the ODE and finally fix an integration constant with a known value of
the integral.
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A Bee-Style Question

Example: Gaussian-damped integral

Evaluate ∫ ∞

0
e−2x2 cos(3x) dx

Instead of attacking it head-on, we study

F (a, b) :=
∫ ∞

0
e−ax2 cos(bx) dx , a > 0, b ∈ R.

Our goal: understand F (a, b) in general, and then plug in a = 2, b = 3.
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How Does the Graph Look?
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Figure: Plot of e−2x2 cos(3x) on (0,∞): a decaying oscillation
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From the Integral to an ODE (I)

ODE Recipe: Differentiating under the integral sign
Fix a > 0 and view F (a, b) as a function of b:

F (a, b) =
∫ ∞

0
e−ax2 cos(bx) dx .

(Gaussian decay allows differentiation inside the integral.)
• Differentiate with respect to b:

∂F
∂b = −

∫ ∞

0
x e−ax2 sin(bx) dx .

• Use the identity
xe−ax2 = − 1

2a
d

dx
(
e−ax2)

.
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From the Integral to an ODE (II)

ODE Recipe: Preparing for integration by parts
Substituting

xe−ax2 = − 1
2a

d
dx
(
e−ax2)

into the derivative gives

∂F
∂b = 1

2a

∫ ∞

0

d
dx
(
e−ax2) sin(bx) dx .

We now integrate this expression by parts with respect to x .
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Deriving the ODE

Proof Sketch: Integration by parts
Integrate by parts:∫ ∞

0
d
(
e−ax2) sin(bx) =

[
e−ax2 sin(bx)

]∞
0

− b
∫ ∞

0
e−ax2 cos(bx) dx .

The boundary term vanishes, so∫ ∞

0

d
dx
(
e−ax2) sin(bx) dx = −b F (a, b).

Therefore
∂F
∂b = 1

2a (−bF (a, b)) = − b
2a F (a, b).
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Solving the ODE for F (a, b)

Concept: Shape of F (a, b)
From

∂F
∂b = − b

2a F ,

we separate variables:

1
F
∂F
∂b = − b

2a =⇒ ln F (a, b) = −b2

4a + C(a).

Exponentiating,

F (a, b) = A(a) exp
(

−b2

4a

)
, a > 0,

where A(a) is a constant with respect to b.
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Evaluating the Integral

Fixing A(a)
At b = 0,

F (a, 0) =
∫ ∞

0
e−ax2 dx = 1√

a · 1
2Γ
(1

2

)
,

so A(a) =
√
π

2
√

a , and

F (a, b) =
√
π

2
√

a exp
(

−b2

4a

)
.

Back to the Bee problem
In particular, ∫ ∞

0
e−2x2 cos(3x) dx = F (2, 3) =

√
π

2 3
2

exp
(

−32

23

)
.
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Special functions are useful and those who need them and those who
know them should start to talk to each other. . . The mathematical
community at large needs the education on the usefulness of special
functions more than most other people who could use them.
— Richard Askey

“

”



∫∫ ∮Γ
(1

2
)

=
√

π

to be continued. . .


